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We study excitations in weakly interacting pairs of quantum spin ladders coupled through geometrically
frustrated bonds. The ground state is a disordered spin liquid that at high fields is replaced by an ordered chiral
helimagnetic phase. The spectra observed by high-field inelastic neutron scattering experiments on the proto-
type compound Sul-Cu2Cl4 are qualitatively different from those in the previously studied frustration-free spin
liquids. Beyond the critical field Hc=3.7 T, the soft mode that drives the quantum phase transition spawns two
separate excitations: a gapless Goldstone mode and a massive magnon. Additional massive quasiparticles are
clearly visible below Hc, but are destroyed in the ordered phase. In their place one observes a sharply bound
excitation continuum.
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I. INTRODUCTION

Gapped quantum-disordered antiferromagnets �AFs�, also
known as “spin liquids,” have become prototype materials
for the study of Bose-Einstein condensation and related
phenomena.1–6 By virtue of the Zeeman effect, the magnetic
field directly affects the chemical potential for the relevant
lowest-energy triplet excitations. The latter excitations can
be viewed as bosons with hard-core repulsion. Exotic quan-
tum critical points are realized when the gap energy for one
member of the triplet is driven to zero at some critical field
Hc and a macroscopic number of those magnons get incor-
porated into the ground state. At H�Hc one typically ob-
serves a magnetically ordered state. However, due to the
strong interactions the corresponding excitation spectrum is
nothing like that of conventional ordered AFs.6

Usually at H�Hc the magnon branch that goes soft at the
quantum critical point is replaced by a gapless collective
Goldstone mode.4–6 For all models and prototypical materi-
als studied to date, the two other members of the original
excitation triplet survive as sharp gap excitations. Thus, the
low-energy spectrum remains dominated by three long-lived
quasiparticles. In the present work we study the spin dynam-
ics in a gapped quantum AF with strong geometric frustra-
tion of magnetic interactions. In a stark contrast to the be-
havior of frustration-free spin liquids, we find that above Hc
the soft mode gives rise to two distinct excitation branches,
while the higher-energy gapped magnons become unstable
and are replaced by a broad excitation continuum.

Our prototype material, Sul–Cu2Cl4,7–9 is a quasi-one-
dimensional Heisenberg AF with a singlet ground state and a
spin gap of �0=0.52 meV. The corresponding network of
S=1 /2 Cu2+ spins is best described as an array of four-leg
spin tubes with dominant AF nearest-neighbor coupling
along the legs and several weaker rung interactions of com-
parable strength. The tube’s legs run along the crystallo-

graphic c axis of the triclinic P1̄ structure. The correspond-
ing interaction topology is illustrated in Fig. 1. Each spin

tube consists of two spin ladders, J1 and J3 being the
leg and the rung exchange constants, respectively. The two
ladders are coupled via exchange constants J2 and J4,
that are in obvious geometric frustration with J1. Even
though the ground state is disordered, frustration ensures
that dynamic one-dimensional spin correlations in
Sul-Cu2Cl4 are peaked at incommensurate wave vectors
l0=0.5−� ,1.5+� ,�=0.022�2�.8 The dispersion of the gap
excitation along the legs of the tubes can be approximated as

���q�2 = �0
2 + v0

2�qc − 2�l0�2, �1�

where v0�14 meV is the spin wave velocity. Any disper-
sion transverse to the c axis is undetectably small. Previously
we have demonstrated that the application of a magnetic field
exceeding Hc=3.7 T destroys the spin liquid and induce an
ordered helimagnetic state with an incommensurate propaga-
tion vector.9 The incommensurability along the c axis exactly
corresponds to the minimum of the dispersion at zero field.
The present work deals with the spin dynamics on either side
of this field-induced phase transition.

II. EXPERIMENTAL PROCEDURES

Inelastic neutron scattering measurements were per-
formed on the same fully deuterated single crystal samples as
those used in Ref. 8. Two series of experiments were carried
out at the V2-Flex and TASP cold neutron spectrometers at
HMI and PSI, respectively. In setup 1 we used
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FIG. 1. A schematic representation of the magnetic interaction
topology in Sul–Cu2Cl4. J1 denotes the “leg” coupling, and J2, J3

and J4 are the three distinct “rung” interactions.
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Ef =3.7 meV fixed final energy neutrons, while the sample
environment was a 14.5 T split-coil cryomagnet with a dilu-
tion refrigerator insert. Data in setup 2 were collected with
Ef =3 meV and a similar 9 T setup. In both cases we utilized
pyrolitic graphite �PG� vertically focused monochromators
and horizontally focused analyzers, as well as Be filters po-
sitioned after the sample. The field was in all cases applied
along the b axis and scattering data were collected in the
�h ,0 , l� reciprocal-space plane. Most of the data were mea-
sured in constant-q scans at the wave vector transfers where
the previously measured one-dimensional �1D� magnon dis-
persion is a minimum: q= �h ,0 ,0.48�. Momentum transfers
along the a� axis were chosen to optimize wave-vector res-
olution along the c� direction. The background was measured
at the wave vectors �h ,0 ,0.6�, where no magnetic contribu-
tion is expected, due to a very steep dispersion along the
crystallographic c� direction. These background scans were
fit to a constant plus a Gaussian function centered at zero
energy transfer, to account for fast neutron background and
elastic incoherent scattering from the sample and sample en-
vironment, respectively. The resulting fitted background
function was subtracted from the signal scans.

III. EXPERIMENTAL RESULTS

Typical background-subtracted scans collected at H�Hc
are shown in Fig. 2. As the external magnetic field is in-
creased, the single peak seen at H=0 �Ref. 8, Fig. 3� splits
into three components. The gap energy of the central and
most intense component �mode 2� is field independent. The
energies of modes 1�3� decrease �increase� with the field, as
expected for Zeeman splitting of the S=1 excitation triplet.
The gap in the lower branch �mode 1� approaches zero en-
ergy as H→Hc.

For magnetic fields exceeding Hc=3.7 T �Fig. 3� the
measured excitation spectrum undergoes some drastic
changes. As can be seen in Fig. 3�a�, just above the critical
field, at H=4 T, mode 3 becomes very weak and is, in fact,
barely visible. It is totally absent for all other values of mag-
netic field applied in our experiments �5, 8, 9.5, and 13.5 T�.
The gap energy for mode 2 starts to increase with increasing
H. Finally, mode 1, being critical at H=Hc, re-acquires an
energy gap at higher fields �Figs. 3�b� and 3�c��. This gap,
however, increases rather slowly with the field not exceeding
0.3 meV even at the highest attainable field of 13.5 T.

IV. THEORETICAL CONSIDERATIONS

The reopening of the spin gap at H�Hc is, at the first
glance, puzzling. Indeed, in those spin liquids that undergo
similar field-induced ordering transitions the gap reappears
in the high field phase due to magnetic anisotropy effects. In
that case the transition is of the Ising, rather than the BEC,
universality class. However, in the case of Sul-Cu2Cl4, mag-
netic anisotropy is negligibly small, as discussed in Ref. 9.
Moreover, since the helimagnetic ordering occurs at an in-
commensurate wave vector, one can rigorously prove that
there must be a gapless “sliding mode” �“phason”�. This re-
mains true even if anisotropy is present. The sinusoidal spin

spiral that is the ground state in the isotropic case, will be
distorted by the anisotropy to form a soliton lattice. That
soliton array, however, being incommensurate, will retain the
ability to slide freely relative to the underlying crystal struc-
ture.

To fully understand the nature of the spin gap in
Sul-Cu2Cl4, we shall develop a field-theoretical description
of the low-energy spin correlations in a pair of magnetized
spin ladders coupled with geometrically frustrated interac-
tions.

A. Interladder interactions

We start with writing down the spin Hamiltonian for the
frustrated spin tube geometry shown in Fig. 1

H = �
n;a=1,2

�J1Sn
aSn+1

a + J1Tn
aTn+1

a + J3Sn
aTn

a�

+ �
n

�J4Sn
1Sn

2 + J2Sn+1
1 Sn

2 + J2Tn
1Tn

2 + J4Tn+1
1 Tn

2� . �2�
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FIG. 2. Field dependence of background-subtracted inelastic
scattering at the 1D AF zone-center �0.5, 0, 0.48�, collected at
H�Hc and T�70 mK. Solid lines are model cross section fits, as
described in Sec. V. Shaded areas are partial contributions of three
separate excitation branches. Inserts: Dispersions of the three field-
driven excitation branches in Sul-Cu2Cl4 and evolution of the cal-
culated full width at half maximum resolution ellipsoids plotted in
projection onto the �l ,��� plane.
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Here a=1,2 labels the two structural ladders, while Sn an
Tn are spin operators on the corresponding legs. We direct
the reader’s attention to the fact that the ratio of spin gap �0
to the magnetic excitations bandwidth v0 in Sul-Cu2Cl4 is
much smaller than in most known spin ladders. This is likely
to be a consequence of geometric frustration. Whatever the
cause, it makes this particular system ideal for application of
the field theory methods developed in Ref. 10.

We shall treat Hamiltonian �2� as one describing two
weakly interacting ladders. Assuming J1�J2 ,J3 ,J4, there are
two cases to consider: �i� J3� �J2−J4�	J�. Here one ladder
is composed of spins S1,2 and the other of spins T1,2. Such
ladders have spectral gaps ��J3. The second sum in Eq. �2�
represents a frustrated interaction and in the gapped phase
can be considered as a perturbation. This is justified by the
fact that the term with J3 has smaller scaling dimension than
J2 ,J4 hence generating a stronger coupling. �ii� Alternatively,
one may consider �J2−J4��J3	J�. Then the two ladders are
composed of S and T spins, respectively. The spin gap is of

the order of �J2−J4�. In either scenario, the interladder inter-
actions J� are irrelevant at small magnetic fields, yet become
relevant when the external field drives the single-ladder gap
to zero.

To obtain the continuum limit of the lattice model �2�, we
approximate the spin operators as follows:

Sn
a � Ma�x� + �− 1�nna�x�, a = 1,2,

Tn
a � La�x� + �− 1�nla�x�, a = 1,2, �3�

where l ,n and L ,M are operators with scaling dimensions
1/2 and 1, respectively. It turns out that only antibonding
combinations of the staggered magnetizations become
critical in high magnetic fields. Therefore only such
combinations will generate relevant inter-ladder coupling
at H�Hc. They are defined as Na=na− la�a=1,2� and
N1=n1−n2 ,N2= l1− l2, for cases �i� and �ii�, respectively.

Substituting these definitions into Eq. �2� and keeping
only the antibonding staggered magnetization terms, we ob-
tain the following interladder interaction:

V = 	
 dx�N1�xN2 − N2�xN1� , �4�

where 	�J� /J1.

B. Ginzburg-Landau model

Interaction �4� is easier to treat in the spin-liquid phase
when the spectrum is gapped. Here we shall follow Affleck11

who suggested to describe the low lying modes of spin lad-
der by an effective Ginzburg-Landau model with the La-
grangian density

L =
1

2
��
��2 +

ṽ2

2
��x��2 +

�̃2

2
�2 + g��2�2, �5�

where ��N, and the bare parameters ṽ, �̃ are of the same
order as the velocity and gap in the actual single-ladder spec-
trum. It is straightforward to show that the introduction of
the interaction �4� generates two modes with the spectrum

E�
2 = �2 + v2�qc − � � ��2, �6�

where � ,v are the renormalized gap energy and spin wave
velocity, respectively, and ��	. The incommensurate
gapped dispersion is fully in agreement with the existing data
on Sul-Cu2Cl4.

When the magnetic field exceeds the spin gap the trans-
verse components of the staggered magnetizations become
critical. Interaction �4� becomes relevant, but its form is
highly nonstandard from the field theory point of view since
the corresponding interaction density has nonzero conformal
spin �that is its left and right conformal dimensions do not
coincide�. Attempts to treat such interactions using standard
field theory methods have met with mixed success.12 Below
we shall adopt a different approach. Again, following
Affleck,11 close to the critical field we will describe each spin
ladder using the Landau-Ginzburg theory with the ���4 inter-
action. When applying this formalism to our case, one re-

0 1 2 3 4

0

10

20

30

40
In

te
n

s
it
y

(a
rb

.
u

.)

H=4 T

0.40 0.45 0.50 0.55

0

1

2

3

�
�

(m
e

V
)

l (r.l.u.)

2

3

0 1 2 3 4

0

10

20

30

40

In
te

n
s
it
y

(a
rb

.
u

.)

0.40 0.45 0.50 0.55

0

1

2

3

�
�

(m
e

V
)

l (r.l.u.)

1

2

H=9.5 T

0 1 2 3 4

0

10

20

30

40

In
te

n
s
it
y

(a
rb

.
u

.)

��(meV)

0.40 0.45 0.50 0.55

0

1

2

3

�
�

(m
e

V
)

l (r.l.u.)

2H=13.5 T

(a)

(b)

(c)

1 2
3

2

2

4

1

1

4

1

1

4

4

4

FIG. 3. Background-subtracted neutron spectra measured in
Sul–Cu2Cl4 at the 1D AF zone center �0.5, 0, 0.48� in various ap-
plied magnetic fields above the critical field, H�Hc, and 150 mK.
The lines, shaded areas, and graphical representations of the reso-
lution functions are as in Fig. 2. The shaded area in the inserts
indicates a continuum scattering, with the corresponding solid line
depicting the lower bound of the continua.
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places Nz= �1−+� ,N�= � ,+�, where  are bosonic fields
and writes the Lagrangian as

L = a
+��
 − ��a +

1

2m
�xa

+�xa + g��1�4 + �2�4�

+ J��1
+�x2 − 2

+�x1� , �7�

where ��H−Hc, m��, and the coupling g is assumed to
be large.

C. Incommensurate order and spectrum at H�Hc

We now do the substitution

 =
1
�2

�I + i�x�̃ , �8�

and

̃1,2 = e�iQx�1,2, �9�

where �x is the Pauli matrix and Q�	. Then the interaction
density becomes

g��1�4 + �2�4� →
g

2
����1�2 + ��2�2�2

− ��1
+�2e2iQx − �1

+�2e−2iQx�2�

→
g

2
����1�2 + ��2�2�2 + 2��1�2��2�2� , �10�

since at large Q the oscillatory terms are wiped out when one
integrates over x. In terms of �a’s the ground state of the
resulting model is a ferromagnet. In other words, only one
species of bosons condenses, e.g., �1. The Hamiltonian for
this field is just the bosonic one with a point-like repulsion.
So the excitation spectrum at small wave vectors is linear in
wave vector corresponding to the phase fluctuations of the
condensate. Bosons of the second flavor remain massive with
the energy gap �2���1�2��.

Now we have to go back to the original variables. It turns
out that the magnetic structure observed experimentally in
Sul–Cu2Cl4 corresponds to the case denoted above as �i�. For
that case we get the following picture of the soft spin modes:

n1
� � − l1

� � N1
� = ��1eiQx,�1

�e−iQx� , �11�

n2
� � − l2

� � N2
� = i��1eiQx,− �1

�e−iQx� . �12�

All spin fluctuations occur in the plane perpendicular to the
magnetic field. Along the J3 bonds the spins are antiparallel.
Spins along J2 or J4 are perpendicular to each other. The
propagation vector along the leg axis is 2�l0=�−Q, so l0 is
close to 1/2. Similarly, for �ii�:

n1
� � − n2

� � N1
� = ��1eiQx,�1

�e−iQx� , �13�

l1
� � − l2

� � N2
� = i��1eiQx,− �1

�e−iQx� . �14�

here the spins are parallel along J2, and perpendicular on the
J3 bond.

The model thus qualitatively reproduces the diffraction
result for the elastic modes, but also predicts that at H�Hc

the soft mode splits into two components. One, as required,
is gapless. The other mode has a gap that scales as the square
of the transverse ordered moment. Below we shall show that
this prediction is indeed fully consistent with the inelastic
data.

V. DATA ANALYSIS

A quantitative analysis of the inelastic neutron data in-
volves fitting the measured scans to a parameterized model
cross section function, numerically convoluted with the four-
dimensional resolution function of the spectrometer. We start
with the simpler regime H�Hc.

A. Low fields

For the vicinity of the minima of the one-dimensional
dispersion where all scans were collected, the cross section
was written in the single-mode approximation assuming
three separate excitation branches corresponding to
Sz=0, �1. Since the Zeeman term commutes with the
Heisenberg Hamiltonian, the spectrum at any H�Hc will be
exactly as at H=0, except for a constant shift in the energies
of the Sz=1 and Sz=−1 magnons. With this in mind, the
dispersion relations for mode ���=1,2 ,3� were written as:

���,q = ��q + �� − �0. �15�

The spin wave velocity and zero-field gap were fixed at
v0=14 meV and �0=0.52 meV, respectively, as previously
measured in zero field. The gap energies �� for each mode
were assumed to be field dependent. The single-mode cross
section was then written as:

d2�

d�dE�
� �

�

�f�q��2
A�

��q
��� − ��,q� . �16�

Here are A� are separate intensity prefactors for each of the
three modes. This model, when convoluted with the known
instrument resolution, fits all the scans collected at H�Hc
rather well. Such fits are shown in heavy solid lines in Fig. 2.
Contributions due to the three components of the spectrum
are represented by shaded areas. The asymmetric peak
shapes with extended “tails” on the high-energy side are en-
tirely due to resolution effects.

B. H�Hc: low-energy modes

Finding an appropriate dispersion relation for the two
theoretically predicted descendants of the soft mode in the
regime H�Hc is not straightforward. The guidance provided
by the calculations in the previous section is limited, as they
are only applicable in the direct proximity of the ordering
vector.

For the gapless mode it is clear that at H=Hc one should
still be able to employ Eqs. �1� and �15� with �1=0. How-
ever, for H�Hc the dispersion near the ordering vector
should be linear, with the slope progressively increasing with
H−Hc. In the strongly 1D case like that of Sul-Cu2Cl4, one
can expect the dispersion relation to follow the lower bound
of continuum excitations in isolated ladders. The latter were
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investigated in Ref. 13 and can be represented by the same
parabolic curve as at H=0, but offset both in energy and
momentum. The “gap” �1 becomes negative. The corre-
sponding dispersion and neutron cross section are still given
by Eqs. �15� and �16�, respectively, but the definition of ��q
in Eq. �15� is changed to:

���q�2 = �0
2 + v0

2��qc − 2�l0� + ��2, �17�

�2 =
�0��1�

v0
2 �2 −

�1

�0
 . �18�

Typical dispersion relations calculated using this equation
are the lowest-energy curves plotted in the insets in Fig. 3.

We shall label the theoretically predicted gapped descen-
dent of the soft mode with the index �=4. It appears reason-
able to approximate its dispersion with Eqs. �1� and �15�, as
at H�0. The gap �4 can be accurately determined from our
scans that show a peak at the corresponding energy. In con-
trast, the parameter �1 actually represents the velocity at
qc→ l0. It cannot be accurately measured due to limitations
imposed by the experimental resolution. On the other hand, it
cannot be totally disregarded either, as it affects the observ-
able high-energy resolution tail of the gapless mode. In order
to avoid dealing with an overparameterized model, a com-
promise was reached by somewhat arbitrarily postulating
�4= ��1�. Indeed, both parameters are zero at H=Hc and are
expected to increase in absolute values at higher fields. As
represented by the heavy solid lines in the lower-energy
range of the plots shown in Fig. 3, this model, though some-
what artificial, reproduces the experimental data remarkably
well. In the same figure the light gray shaded areas are partial
contributions of the gapless and gapped components �modes
1 and 4�, respectively.

C. H�Hc: high energies

Upon crossing the critical field, the central component of
the excitation triplet undergoes some drastic changes. This
mode is the strongest and sharpest feature of the spectrum at
H�Hc �Fig. 2�c��, but is replaced by a much broader peak
above the transition �Fig. 3�a��, measured using in the same
experimental configuration�. The single-mode approximation
�16� gives excellent fits to the data at low fields, but totally
fails to describe the shape of the middle mode at H�Hc
�Fig. 3, dashed curves�. This leads us to the conclusion that
the quasiparticle description of this part of the spectrum
breaks down in the high-field phase. Instead, the excitations
are a broad continuum of states. By analogy with the Müller
ansatz that describes continuum excitations in gapless spin
chains, we used the following empirical expression to ap-
proximate the corresponding contribution ��=2� of this
spectral feature to the neutron cross section:

d2�

d�dE�
� A2�f�q��2�� − �2,q�−���� − �2,q� . �19�

In this formula ��2,q is still given by Eq. �15�, and describes
the lower bound of the continuum. A parameter � character-
izes how steeply the intensity falls off with energy. With the

value �=0.30�6� refined at H=9.5 T, this formula yields
much better fits to the data at all fields at H�Hc �Fig. 3,
solid curves� than the single-mode approximation �dashed
curves�.

The highest-energy component of the original triplet of
gap excitations is also strongly affected by the transition. As
clearly seen in Fig. 3, its intensity drops dramatically and it
is no longer observed at H�4 T. To describe the mode at
that field however, in our analysis we employed an expres-
sion similar to that for the middle mode, the parameter �
fixed at the same value.

D. Fits to experimental data

The model cross sections described above were numeri-
cally convoluted with the spectrometer resolution function,
calculated in the Popovici approximation.14 They were then
used in the least-squares analysis of constant-Q scans col-
lected at each value of the applied field. The resulting fits are
shown as the solid lines in Figs. 2 and 3. Partial contributions
of each spectral component are represented by the shaded
areas. The insets show the dispersion relations of all compo-
nents calculated using the parameters determined in the fit-
ting process. The shaded area signifies continuum scattering,
with the corresponding solid line indicating the lower bound.
In the same plot we show the evolution of the experimental
resolution ellipse in the course of each constant-Q scan. The
gap energies obtained in these fits are plotted vs. applied
magnetic field on Fig. 4 �symbols�.

VI. DISCUSSION

Despite fact that our data analysis is based on several
somewhat arbitrary assumptions regarding the form of the
dynamic structure factor, the extracted field dependencies of
the gap energies should be quite reliable. Indeed, the gaps are
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FIG. 4. Field dependence of the excitation energies at the 1D AF
zone center in Sul-Cu2Cl4. The points are the data from the INS
experiments and the solid lines are guides for the eye. At H�Hc,
the central excitation branch is replaced by a sharp continuum rep-
resented by the shaded band. The field dependence of the gapped
excitation �above 3.7 T� is compared with that of the square of the
transverse ordered moment, from Ref. 9.
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robustly identified by a sharp jump in the neutron intensity
that occurs in the energy window defined by the resolution
function. The fact that the central excitation branch is re-
placed by a sharp continuum at H�Hc is also a solid experi-
mental finding, as is the disappearance of the higher-energy
mode.

The linear Zeeman splitting of the triplet at H�Hc occurs
exactly as expected: the system is not ordered and the Zee-
man term commutes with the Heisenberg Hamiltonian. For
H�Hc, the central prediction of our Ginzburg-Landau analy-
sis is that the energy of the gapped excitation scales as the
square of the transverse ordered moment. This is indeed con-
sistent with the experiment. In Fig. 4 the heavy solid line,
and the corresponding right-hand-side Y axis, represent the
field dependence of the latter, as previously measured
experimentally.9 To within a constant scaling factor, this
curve exactly reproduces the field dependence of the reopen-
ing gap �4�H� measured in this work.

The dramatic broadening of the higher-energy excitations
at H�Hc is not captured by our hydrodynamic model. While
a further theoretical study is clearly required, we note that
the phenomenon resembles the one previously observed in
the bond-alternating S=1 chain system NTENP.15 In the lat-

ter system it was attributed to magnon decay channels that
are opened by the lifting of rotational symmetry at Hc. A
similar mechanism may at work in Sul-Cu2Cl4.

VII. CONCLUSION

In summary, we suggest that the geometric frustration and
the coupled-ladder topology of Sul-Cu2Cl4 are responsible
for a complex and very unusual excitation spectrum in the
magnetized state. At the same time, triplet low-energy exci-
tations at H�Hc are rather typical for an isotropic spin liq-
uid.
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